Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation
نویسندگان
چکیده
Spike timing-dependent plasticity (STDP) is under neuromodulatory control, which is correlated with distinct behavioral states. Previously, we reported that dopamine, a reward signal, broadens the time window for synaptic potentiation and modulates the outcome of hippocampal STDP even when applied after the plasticity induction protocol (Brzosko et al., 2015). Here, we demonstrate that sequential neuromodulation of STDP by acetylcholine and dopamine offers an efficacious model of reward-based navigation. Specifically, our experimental data in mouse hippocampal slices show that acetylcholine biases STDP toward synaptic depression, whilst subsequent application of dopamine converts this depression into potentiation. Incorporating this bidirectional neuromodulation-enabled correlational synaptic learning rule into a computational model yields effective navigation toward changing reward locations, as in natural foraging behavior. Thus, temporally sequenced neuromodulation of STDP enables associations to be made between actions and outcomes and also provides a possible mechanism for aligning the time scales of cellular and behavioral learning.
منابع مشابه
Acetylcholine-modulated plasticity in reward-driven navigation: a computational study
Neuromodulation plays a fundamental role in the acquisition of new behaviours. Our experimental findings show that, whereas acetylcholine biases hippocampal synaptic plasticity towards depression, the subsequent application of dopamine can retroactively convert depression into potentiation. We previously demonstrated that incorporating this sequentially neuromodulated Spike-Timing-Dependent Pla...
متن کاملFunctional requirements for reward-modulated spike-timing-dependent plasticity.
Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term th...
متن کاملTiming is not Everything: Neuromodulation Opens the STDP Gate
Spike timing dependent plasticity (STDP) is a temporally specific extension of Hebbian associative plasticity that has tied together the timing of presynaptic inputs relative to the postsynaptic single spike. However, it is difficult to translate this mechanism to in vivo conditions where there is an abundance of presynaptic activity constantly impinging upon the dendritic tree as well as ongoi...
متن کاملRobust self-localisation and navigation based on hippocampal place cells
A computational model of the hippocampal function in spatial learning is presented. A spatial representation is incrementally acquired during exploration. Visual and self-motion information is fed into a network of rate-coded neurons. A consistent and stable place code emerges by unsupervised Hebbian learning between place- and head direction cells. Based on this representation, goal-oriented n...
متن کاملNeuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules
Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide "when" to create new memories in response to a flow ...
متن کامل